Abstract

Aging is associated with reduced immune reactivity, contributing to increased rates of infectious disease and cancer in old age. We have begun to assess the potential for sympathetic nervous system involvement in age-related immune dysfunction by characterizing sympathetic noradrenergic (NA) innervation in lymphoid organs in old animals. In the present study noradrenergic innervation of spleen and thymus was examined histologically and neurochemically in 2-, 12- and 24-month old BALB/c mice. In the thymus of 2-month old animals, NA nerve fibers were found in the subcapsular, cortical, and cortico–medullary regions associated with blood vessels and septa; occasional branches from these nerve fibers entered the parenchyma. With increasing age and thymic involution, NA nerve fibers increased in density; by 24 months of age, dense plexuses were compacted among septa and blood vessels, and numerous linear, varicose nerve fibers were observed branching into the parenchyma. Thymic norepinephrine (NE) concentration (per mg wet weight) increased approximately 4-fold in 12-month old animals and 15-fold in 24-month old animals. Taking the reduced thymus weight into account, total thymic NE at 12- and 24-month of age was equivalent to total thymic NE at 2-month of age, suggesting that NA innervation is maintained as the thymus involutes. In the spleen from 2-month old animals, NA innervation entered the white pulp with the central artery to innervate the periarteriolar lymphatic sheath and the marginal zone. At 12-month of age, histologically and neurochemically there was no change in splenic NA innervation. By 24-month of age, NE was increased significantly, independent of changes in spleen weight. Histologically, increased catecholamine-containing fibers were apparent at 24-month of age, particularly in the parenchyma surrounding the central artery. The alterations in sympathetic NA innervation of lymphoid organs with age suggest that the sympathetic nervous system and NE may play a role in age-associated immune dysregulation. Alternatively, the changes in NA innervation may be secondary to functional changes within the immune system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.