Abstract

Transgenic rats containing the mouse albumin promoter and enhancer directing the expression of simian virus (SV40) T antigen (T Ag) exhibited a 100% incidence of hepatic neoplasms by 24-36 wk of age. These transgenic rats exhibited expression of large T Ag and c-myc protein within focal basophilic lesions and nodules, but not in surrounding hepatocytes. At 24 wk of age, female TG+ rats exhibited a significantly greater number of lesions and a much greater percentage of the liver occupied by TG+ focal hepatic lesions than did their male TG+ littermates. Previous studies on these animals [Sargent et al., Cancer Res 1997;57:3451-3456] demonstrate that at 12 wk of age approximately one-third of metaphases in hepatocytes exhibit a duplication of the 1q3.7-1q4.1 region of rat chromosome 1, with the smallest common region of duplication being that of 1q4.1. Duplication of the 1q3.7-1q4.3 region is also noted in many primary hepatic neoplasms resulting from the multistage model of Initiation-Promotion-Progression (IPP) [Sargent et al., Cancer Res 1996;56:2985-2991]. This region is syntenic with human 11p15.5 and mouse 7ter, which have been implicated in the development of specific neoplasms. Within the syntenic region was a cluster of imprinted genes whose expression we investigated in livers and neoplasms of TG+ rats. H19 was expressed in almost all of the neoplasms, but not in normal adult liver cells. Igf2 expression was detected in the majority of hepatic neoplasms of female TG+ rats, but in a relatively smaller number of neoplasms of TG+ males. The expression of p57Kip2 (Kip2), a cyclin-dependent kinase inhibitor that was also in the imprinted region, exhibited some variable increased expression predominantly in hepatic neoplasms from livers of female TG+ rats. Other imprinted genes within the imprinted gene cluster-insulin II (Ins2), Mash2 (which codes for a basic helix-loop-helix transcription factor), and Kvlqt1 (coding for a component of a potassium transport channel)-showed no consistently different expression from that seen in normal hepatocytes. Another gene, also located on the long arm of chromosome 1, that showed changes was the ribonucleotide reductase M1 subunit (Rrm1), in which an increase in its expression was found. This was seen in hepatic neoplasms of TG+ rats of both sexes compared with surrounding normal-appearing liver. Because hepatic neoplasms developing in livers of rats treated with chemical carcinogens commonly exhibit an increased expression of c-myc mRNA, expression of this gene was investigated in focal lesions and livers of TG+ rats, although c-myc was not located on chromosome 1. c-myc mRNA was increased in focal lesions, nodules, and neoplasms in both male and female TG+ rats compared with adult and surrounding liver. Immunostaining for c-myc protein demonstrated detectable levels in isolated single cells as well as focal lesions and neoplasms. Thus, the enhanced c-myc expression, common to all hepatic neoplasms in this system, coupled with enhanced expression of Igf2 in female TG+ rats, may be responsible for the increase in growth rate in hepatic neoplasms of female TG+ rats compared with that in livers of male TG+ rats and may contribute to neoplastic progression in the liver of this transgenic model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call