Abstract

We assessed whether the synchrony between brain regions, analyzed using electroencephalography (EEG) signals recorded during sleep, is altered in subjects with post-traumatic stress disorder (PTSD) and whether the results are reproducible across consecutive nights and subpopulations of the study. A total of 78 combat-exposed veteran men with (n = 31) and without (n = 47) PTSD completed two consecutive laboratory nights of high-density EEG recordings. We computed a measure of synchrony for each EEG channel-pair across three sleep stages (rapid eye movement [REM] and non-REM stages 2 and 3) and six frequency bands. We examined the median synchrony in 9 region-of-interest (ROI) pairs consisting of 6 bilateral brain regions (left and right frontal, central, and parietal regions) for 10 frequency-band and sleep-stage combinations. To assess reproducibility, we used the first 47 consecutive subjects (18 with PTSD) for initial discovery and the remaining 31 subjects (13 with PTSD) for replication. In the discovery analysis, five alpha-band synchrony pairs during non-REM sleep were consistently larger in PTSD subjects compared with controls (effect sizes ranging from 0.52 to 1.44) across consecutive nights: two between the left-frontal and left-parietal ROIs, one between the left-central and left-parietal ROIs, and two across central and parietal bilateral ROIs. These trends were preserved in the replication set. PTSD subjects showed increased alpha-band synchrony during non-REM sleep in the left frontoparietal, left centro-parietal, and inter-parietal brain regions. Importantly, these trends were reproducible across consecutive nights and subpopulations. Thus, these alterations in alpha synchrony may be discriminatory of PTSD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call