Abstract

Alterations of the receptor-binding properties of swine influenza A viruses (SIVs) during their isolation in embryonated chicken eggs have not been well studied. In this study, the receptor-binding properties of classical H1 SIVs isolated solely in eggs or Madin-Darby canine kidney (MDCK) cells were examined. Sequencing analysis revealed substitutions of D190V/N or D225G in the haemagglutinin (HA) proteins in egg isolates, whereas MDCK isolates retained HA genes identical to those of the original viruses present in the clinical samples. Egg isolates with substitution of either D190V/N or D225G had increased haemagglutinating activity for mouse and sheep erythrocytes, but reduced activity for rabbit erythrocytes. Additionally, egg isolates with D225G had increased haemagglutination activity for chicken erythrocytes. A direct binding assay using a sialyl glycopolymer that possessed either a 5-N-acetylneuraminic acid (Neu5Ac) alpha2,6galactose (Gal) or a Neu5Acalpha2,3Gal linkage revealed that the egg isolates used in this study showed higher binding activity to the Neu5Acalpha2,3Gal receptor than MDCK isolates. Increased binding activity of the egg isolates to the Neu5Acalpha2,3Gal receptor was also confirmed by haemagglutination assay with resialylated chicken erythrocytes by Galbeta1,3/4GlcNAcalpha2,3-sialyltransferase. These observations were reinforced by flow-cytometric and N-glycan analyses of the erythrocytes. The alpha2,3-linked sialic acids were expressed predominantly on the surface of mouse and sheep erythrocytes. Chicken erythrocytes expressed Neu5Acalpha2,3Gal more abundantly than Neu5Acalpha2,6Gal, and rabbit erythrocytes expressed both 5-N-glycolylneuraminic acid (Neu5Gc) alpha2,6Gal and Neu5Acalpha2,6Gal. Our results demonstrate clearly that classical H1 SIVs undergo alterations in receptor-binding activity associated with an amino acid substitution in the HA protein during isolation and propagation in embryonated chicken eggs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call