Abstract

Treatment of intact normal rat kidney fibroblasts, or of purified NRK plasma membranes, with trypsin or papain markedly enhances adenylate cyclase activity [ATP pyrophosphatelyase (cyclizing) EC 4.6.1.1]. Limited proteolysis (25 μg/ml trypsin for 7 min) of confluent cells grown with unheated calf serum significantly increases cyclase activity, whereas similar treatment of sparse cells causes only a marginal increase in cyclic AMP formation. To determine which membrane protein(s) is altered under conditions which result in proteolytic activation of adenylate cyclase, purified plasma membranes and intact normal rat kidney cells were subjected to limited proteolysis and membrane proteins analyzed by sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis. Membranes prepared from intact confluent normal rat kidney cells exposed to mild trypsinization showed a decrease in proteins of 56,000, 46,000, 37,000, and 32,000 daltons. Trypsin treatment of intact, sparse cells does not activate the cyclase system and does not lead to modification of the 46,000-dalton membrane protein. Treatment of purified normal rat kidney plasma membranes results in the loss of numerous bands in the high molecular mass region (>150,000 daltons) as well as decreases membrane proteins of 56,000, 49,000, 46,000, and 23,000 daltons. Compared with trypsin, the proteolytic action of papain appears to be quite specific, causing a discernible decrease in only the 46,000-dalton protein. The correlation between modification of the 46,000-dalton membrane component and the activation of the cyclase system suggests that perhaps this protein is proteolytically modified to elicit activation of adenylate cyclase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call