Abstract
The development of cardiac hypertrophy is a complicated process, which undergoes a transition from compensatory hypertrophy to heart failure, and the identification of new biomarkers and targets for this disease is greatly needed. Here we investigated the development of isoproterenol (ISO)-induced cardiac hypertrophy in an in vitro experimental model. After the induction of hypertrophy with ISO treatment in H9c2 cells, cell surface area, cell viability, cellular reactive oxygen species (ROS), and nitric oxide (NO) levels were tested. Our data showed that the cell viability, mitochondrial membrane potential, and NO/ROS balance varied during the development of cardiac hypertrophy in H9c2 cells. It was also found that the expression of thioredoxin1 (Trx1) and peroxiredoxin2 (Prdx2) was decreased during the cardiac hypertrophy of H9c2 cells. These results suggest a critical role for Trx1 and Prdx2 in the cardiac hypertrophy of H9c2 cells and in the transition from compensated hypertrophy to de-compensated hypertrophy in H9c2 cells, and our findings may have important implications for the management of this disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.