Abstract

Organophosphates affect brain function through a variety of mechanisms beyond their shared role as cholinesterase inhibitors. The aim of the current study was to investigate the changes in the expression of glial (GLAST and GLT-1) and neuronal (EAAC1) glutamate transporters at mRNA and protein levels in paraoxon-treated rat hippocampus. Adult male Wistar rats were intraperitoneally treated with either vehicle (corn oil) or one of three dosages of paraoxon (0.3, 0.7 or 1mg/kg). After 4 or 18h, both hippocampi of each rat were collected to detect mRNA and protein expression of glutamate transporters using the quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blotting, respectively. Animals treated with 0.3mg/kg paraoxon showed no difference in mRNA and protein levels of the glutamate transporters when compared with control group. At 4h after exposure with 0.7 and 1mg/kg paraoxon, the expression of GLAST and GLT-1 increased at mRNA and protein levels and remained elevated after 18h. No difference in the expression of EAAC1 at mRNA and protein levels was observed in any paraoxon-treated groups compared with the control group. This study showed an increased expression of glial (GLAST and GLT-1), but not neuronal (EAAC1) glutamate transporters, in adult rat hippocampus following administration of convulsive dosages of paraoxon. These suggest a protective and compensatory adaptation for effective uptake of glutamate in hippocampus induced by paraoxon and thus attenuating seizure activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call