Abstract

Many neurodegenerative diseases, such as frontotemporal dementia (FTD), are associated with behavioral deficits, but the anatomical and molecular bases remain poorly understood. Here we show that forebrain-specific expression of FTD-associated mutant CHMP2B causes several age-dependent neurodegenerative phenotypes, including social behavioral impairments. The social deficits were accompanied by a change in AMPA receptor (AMPAR) composition, leading to imbalance between Ca2+-permeable and -impermeable AMPARs. Expression of most AMPAR subunits was regulated by the brain-enriched microRNA (miR-124), whose abundance was markedly decreased in the superficial layers of cerebral cortex of FTD mice. We found similar changes in miR-124 and AMPAR levels in the frontal cortex and iPSC-derived neurons of subjects with behavioral variant FTD. Moreover, miR-124 expression in the medial prefrontal cortex decreased AMPAR levels and partially rescued behavioral deficits. Knockdown of Gria2 also alleviated social impairments in FTD mice. Our results identify a novel mechanism involving miR-124 and AMAPRs in regulating social behavior in FTD and suggest a potential therapeutic avenue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.