Abstract
BackgroundGenome wide association studies (GWAS) have identified several genetic variants that are associated with prostate cancer. Most of these variants, like other GWAS association signals, are located in non-coding regions of potential candidate genes, and thus could act at the level of the mRNA transcript.MethodsWe measured the expression and isoform usage of seven prostate cancer candidate genes in benign and malignant prostate by real-time PCR, and correlated these factors with cancer status and genotype at the GWAS risk variants.ResultsWe determined that levels of LMTK2 transcripts in prostate adenocarcinomas were only 32% of those in benign tissues (p = 3.2 × 10-7), and that an independent effect of genotype at variant rs6465657 on LMTK2 expression in benign (n = 39) and malignant tissues (n = 21) was also evident (P = 0.002). We also identified that whilst HNF1B(C) and MSMB2 comprised the predominant isoforms in benign tissues (90% and 98% of total HNF1B or MSMB expression), HNF1B(B) and MSMB1 were predominant in malignant tissue (95% and 96% of total HNF1B or MSMB expression; P = 1.7 × 10-7 and 4 × 10-4 respectively), indicating major shifts in isoform usage.ConclusionsOur results indicate that the amount or nature of mRNA transcripts expressed from the LMTK2, HNF1B and MSMB candidate genes is altered in prostate cancer, and provides further evidence for a role for these genes in this disorder. The alterations in isoform usage we detect highlights the potential importance of alternative mRNA processing and moderation of mRNA stability as potentially important disease mechanisms.
Highlights
Genome wide association studies (GWAS) have identified several genetic variants that are associated with prostate cancer
Alterations to the relative balance of alternatively spliced forms of the MSMB and HNF1B genes in prostate cancer tissues we found no differences in total HNF1B, CTBP2 or MSMB expression between benign prostatic hyperplasia (BPH) and prostate cancer cases, these genes are alternatively processed
We report here that disruption of the amount or nature of transcripts expressed from the LMTK2, MSMB and HNF1B genes, identified in the genome wide scans for prostate cancer, may be important in the aetiology of this disorder
Summary
Genome wide association studies (GWAS) have identified several genetic variants that are associated with prostate cancer. Most of these variants, like other GWAS association signals, are located in non-coding regions of potential candidate genes, and could act at the level of the mRNA transcript. Survival rates are increasing, cancer of the prostate remains the second most common cause of cancer death in UK men after lung cancer. The advent of genome wide association studies (GWAS) has resulted in a dramatic increase in the number of susceptibility loci that have been associated with the development of prostate cancer (table 1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.