Abstract

The present study was undertaken to test the hypothesis that a high-fat diet-induced liver lipid infiltration is associated with a reduction of hepatic glucagon receptor density (B(max)) and affinity (K(d)), and with a decrease in stimulatory G protein (G(s)alpha) content while enhancing inhibitory G protein (G(i)alpha(2)) expression. We also hypothesized that, under this dietary condition, a single bout of endurance exercise would restore hepatic glucagon receptor parameters and G protein expression to standard levels. Female Sprague-Dawley rats were fed either a standard (SD) or a high-fat diet (HF; 40% kcal) for 2 wk (n = 20 rats/group). Each dietary group was thereafter subdivided into a nonexercised (Rest) and an acute-exercised group (Ac-Ex). The acute exercise consisted of a single bout of endurance exercise on a treadmill (30 min, 26 m/min, and 0% slope) immediately before being killed. The HF compared with the SD diet was associated with significantly (P < 0.05) higher values in hepatic triglyceride concentrations (123%), fat pad weight, and plasma free fatty acid (FFA) concentrations. The HF diet also resulted in significantly (P < 0.05) lower hepatic glucagon receptor density (45%) and G(s)alpha protein content (75%), as well as higher (P < 0.05) G(i)alpha(2) protein content (27%), with no significant effects on glucagon receptor affinity. Comparisons of all individual liver triglyceride and B(max) values revealed that liver triglycerides were highly (P < 0.003) predictive of the decreased glucagon receptor density (R = -0.512). Although the 30-min exercise bout resulted in some typical exercise effects (P < 0.05), such as an increase in FFA (SD diet), a decrease in insulin levels, and an increase in plasma glucagon concentrations (SD diet), it did not change any of the responses related to liver glucagon receptors and G proteins, with the exception of a significant (P < 0.05) decrease in G(i)alpha(2) protein content under the HF diet. The present results indicate that the feeding of an HF diet is associated with a reduction in plasma membrane hepatic glucagon receptor density and G(s)alpha protein content, which is not attenuated by a 30-min exercise bout. It is suggested that liver lipid infiltration plays a role in reducing glucagon action in the liver through a reduction in glucagon receptor density and glucagon-mediated signal transduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.