Abstract
Tropical regions are expected to be some of the most affected by rising sea surface temperatures (SSTs) because seasonal temperature variations are minimal. As temperatures rise, less oxygen dissolves in water, but metabolic requirements of fish and thus, the demand for effective oxygen uptake, increase. Gill remodelling is an acclimation strategy well documented in freshwater cyprinids experiencing large seasonal variations in temperature and oxygen as well as an amphibious killifish upon air exposure. However, no study has investigated whether tropical reef fishes remodel their gills to allow for increased oxygen demands at elevated temperatures. We tested for gill remodelling in five coral reef species (Acanthochromis polyacanthus, Chromis atripectoralis, Pomacentrus moluccensis, Dascyllus melanurus and Cheilodipterus quinquelineatus) from populations in northern Papua New Guinea (2° 35.765′ S; 150° 46.193′ E). Fishes were acclimated for 12–14days to 29 and 31°C (representing their seasonal range) and 33 and 34°C to account for end-of-century predicted temperatures. We measured lamellar perimeter, cross-sectional area, base thickness, and length for five filaments on the 2nd gill arches and qualitatively assessed 3rd gill arches via scanning electron microscopy (SEM). All species exhibited significant differences in the quantitative measurements made on the lamellae, but no consistent trends with temperature were observed. SEM only revealed alterations in gill morphology in P. moluccensis. The overall lack of changes in gill morphology with increasing temperature suggests that these near-equatorial reef fishes may fail to maintain adequate O2 uptake under future climate scenarios unless other adaptive mechanisms are employed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.