Abstract

Diverticular disease (DD) is one of the most prevalent diseases of the large bowel. Lately, imbalance of neuro-muscular transmission has been recognized as a major etiological factor for DD. Neuronal calcitonin gene-related peptide (CGRP) is a potent gastrointestinal smooth muscle relaxant shown to have a widespread effect within the alimentary tract. Nevertheless, CGRPergic innervation of the enteric ganglia has never been considered in the context of motility impairment observed in DD patients. Changes in CGRP and calcitonin receptor-like receptor (CRLR) abundance within enteric ganglia were investigated in sigmoid samples from symptomatic and asymptomatic DD patients using quantitative fluorescence microscopy. CGRP effect on gastrointestinal smooth muscle was investigated using organ bath technique. We found CGRP levels within the enteric ganglia to be declined by up to 52% in symptomatic DD patients. Conversely, CRLR within the enteric ganglia was upregulated by 41% in symptomatic DD. Longitudinal smooth muscle displayed an elevated (+10.5%) relaxant effect to the exogenous application of CGRP in colonic strips from symptomatic DD patients. Samples from asymptomatic DD patients consistently showed intermediate values across different experiments. In conclusion, the present study demonstrates that CGRPergic signaling is subject to alteration in DD. Our results suggest that a hypersensitization mechanism to gradually decreasing levels of CGRP-IR nerve fibers takes place during DD progression. Alterations to CGRPergic signaling in DD disease may have implications for physiological abnormalities associated with colonic DD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.