Abstract

Background: Juvenile neuronal ceroid lipofuscinosis (JNCL), one of the most frequent forms of the NCL storage diseases, is known to be caused by loss-of-function mutations in ceroid-lipofuscinosis neuronal protein 3 (CLN3), but its cell function has not been fully elucidated. We previously reported increased lysosomal pH in CLN3 deficient cells. In the present study, we analysed the consequences of this effect in the endo-lysosomal pathways in CLN3 cells. Methods: The present study investigated different endo-lysosomal pathways in control, CLN2, CLN3 human skin fibroblasts under high and low proteolysis conditions. Cell surface biotinylation after EGF (2 ng/mL) stimulation, EGF phosphorylation (Tyr-845), retromer and cation-independent mannose-6- phosphate receptor (CI-MPR) levels and stability, EGF degradation pathways and cathepsin L and D levels were analysed by western blots. Caveolae mediated endocytosis was analysed by flow cytometry. CIMPR subcellular localization was ascertained by immunocytochemistry, confocal microscopy and further image analysis. Results: Whereas caveolae-mediated endocytosis was not affected in CLN3 cells, clathrin-mediated epidermal growth factor (EGF) internalization was reduced, along with EGF receptor (EGFR) phosphorylation. In addition, cell surface EGFR levels and recycling to the cell membrane were increased. EGFR lysosomal degradation was impaired and our results suggest that the receptor was diverted to proteasomal degradation. We also analysed the machinery responsible for lysosomal hydrolase transport to the lysosome and found increased stability of CIMPR, a major receptor implicated in the transport of hydrolases. The subcellular distribution of the CI-MPR was also altered in CLN3 cells, since it accumulated within the Trans-Golgi network (TGN) and did not progress into the lysosomes. In addition, we found a reduced turnover of retromer subunits, a complex that retrieves the CI-MPR from endosomes to the TGN. Finally and as a possible consequence of these alterations in lysosomal enzyme transport, cathepsin L and D maturation were found suppressed in CLN3 cells. Conclusion: Altogether, these results point to increased lisosomal pH as a pivotal event causing various alterations in intracellular traffic associated to the development of JNCL disease.

Highlights

  • Neuronal Ceroid Lipofuscinoses (NCLs) are the most common group of rare autosomal recessive neurodegenerative disorders of childhood

  • ceroid-lipofuscinosis neuronal protein 3 (CLN3) cells have increased EGF receptor (EGFR) recycling To examine receptor-mediated endocytosis, we analysed the phosphorylation state of the EGFR by Western blot and the rate of ligand endocytosis using epidermal growth factor (EGF) bound to Alexa Fluor 488 (AF488-EGF) by flow cytometry

  • We examined if EGFR recycling was altered in CLN3 fibroblasts in comparison to control and CLN2 fibroblasts by cell surface protein biotinylation, in nontreated cells and in cells treated with EGF at low (2 ng/mL) concentration and reduced glutathione (50 mM); at such low EGF concentration, most of the receptor is recycled to the cell membrane.[29]

Read more

Summary

Introduction

Neuronal Ceroid Lipofuscinoses (NCLs) are the most common group of rare autosomal recessive neurodegenerative disorders of childhood. Juvenile neuronal ceroid lipofuscinosis (JNCL), one of the most frequent forms of the NCL storage diseases, is known to be caused by loss-of-function mutations in ceroid-lipofuscinosis neuronal protein 3 (CLN3), but its cell function has not been fully elucidated. We analysed the consequences of this effect in the endo-lysosomal pathways in CLN3 cells. Cell surface biotinylation after EGF (2 ng/mL) stimulation, EGF phosphorylation (Tyr-845), retromer and cation-independent mannose-6phosphate receptor (CI-MPR) levels and stability, EGF degradation pathways and cathepsin L and D levels were analysed by western blots. Results: Whereas caveolae-mediated endocytosis was not affected in CLN3 cells, clathrin-mediated epidermal growth factor (EGF) internalization was reduced, along with EGF receptor (EGFR) phosphorylation.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.