Abstract
Disruptions in sleep and feeding rhythms are among the consequences of prenatal alcohol exposure. Previously, we reported that ethanol exposure during the second trimester equivalent in rats produces long-lasting impairments in circadian system functioning. In the present study, we examined the effects of ethanol exposure during the third trimester equivalent brain growth spurt on the development of the circadian clock system. Sprague-Dawley male rat pups were exposed to 6.0 g/kg/d ethanol via an artificial rearing procedure on postnatal days (PD) 4 through 9 (EtOH). An artificially reared gastrostomized control group and a normally reared suckle control group were also included. At 10 to 12 weeks of age, wheel-running behavior was measured continuously under a 12-hour/12-hour light/dark (LD) cycle. Thereafter, subjects were exposed to a 6-hour phase delay of the LD cycle, and the ability to adjust to the new LD cycle was evaluated. Before the phase delay, onset time of activity and acrophases of activity in all 3 groups were not significantly different from one another. After the 6-hour LD cycle delay, EtOH subjects were slower to adapt to the new cycle compared with both control groups, as measured by both activity onset and acrophase. Throughout the experiment, activity levels of EtOH subjects tended to be higher compared to both controls. These data demonstrate that ethanol exposure during the third trimester disrupts the ability to synchronize circadian rhythm to light cues. Disruptions in circadian regulation may cause abnormal behavioral rhythmicity, such as disrupted sleep and feeding patterns, as seen in individuals prenatally exposed to ethanol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.