Abstract

BackgroundAlterations in cerebral vasculature are instrumental in affecting cognition. Current studies mainly focus on proximal large arteries and small vessels, while disregarding morphology and blood flow of the arteries between them (medium-to-large arteries). MethodsIn this prospective study, two types of non-contrast enhanced magnetic resonance angiography (NCE-MRA) techniques, simultaneous non-contrast angiography and intraplaque hemorrhage (SNAP) and 3D Time-of-flight (TOF), were used to measure vascular morphologic features in medium-to-large intracranial arteries. Grey matter (GM) tissue level perfusion was assessed with arterial spin labeling (ASL) MRI. Twenty-seven subjects at high cardiovascular risk underwent baseline and 12-month follow-up MRI to compare the relationship between morphological features measured by NCE MRA, GM CBF by ASL MRI, and cognitive function measured by the Montreal Cognitive Assessment (MoCA). ResultsChanges in both global medium-to-large arteries and posterior cerebral (PCA) distal artery length and branch numbers, measured on SNAP MRA, were significantly associated with alterations in MoCA scores (P < 0.01), after adjusting for clinical confounding factors, total brain volume, and total white matter lesion (WML) volume. There were no associations between MoCA scores and vascular features on TOF MRA or ASL GM CBF. ConclusionsAlterations in vascular features of distal medium-to-large arteries may be more sensitive for detecting potential changes in cognition than cerebral blood flow alterations at the parenchymal level captured by perfusion ASL. Hemodynamic information from distal medium-to-large arteries provides an additional tool to advance understanding of the vascular contributions to cognitive function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call