Abstract

Diabetes mellitus (DM) causes the development of a specific cardiomyopathy that results from the metabolic derangements present in DM and manifests as cardiac contractile dysfunction. Although myocardial dysfunction in Type 1 DM has been associated with defects in the function and regulation of the sarcoplasmic reticulum (SR), very little is known about SR function in Type 2 DM. Accordingly, this study examined whether abnormalities in cardiac contractile performance and SR function occur in the prestage of Type 2 DM (i.e., during insulin resistance). Sucrose feeding was used to induce whole body insulin resistance, whereas cardiac contractile performance was assessed by echocardiography and SR function was measured by SR calcium (Ca(2+)) uptake. Sucrose-fed rats exhibited hyperinsulinemia, hyperglycemia, and hyperlipidemia relative to control rats. Serial echocardiographic assessments in the sucrose-fed rats revealed early abnormalities in diastolic function followed by late systolic dysfunction and concurrent alterations in myocardial structure. The hearts of the 10-wk sucrose-fed rats showed depressed SR function demonstrated by a significant reduction in SR Ca(2+) uptake. The decline in SR Ca(2+) uptake was associated with a significant decrease in the cAMP-dependent protein kinase and Ca(2+)/calmodulin-dependent protein kinase II-mediated phosphorylation of phospholamban. The results show that abnormalities in cardiac contractile performance and SR function occur at an insulin-resistant stage before the manifestation of overt Type 2 DM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call