Abstract

Aging and Alzheimer disease lead to alterations in several biochemical properties of cultured skin fibroblasts. Total bound calcium increases in fibroblasts due to normal aging (+52%) and is elevated even further with Alzheimer disease (+197%). Processes that require mitochondrial function, such as glucose and glutamine oxidation, declined in cells from aged donors (-25%) and decreased even further in Alzheimer disease (-46%). In addition, biosynthetic processes that depend upon mitochondrial function, such as glucose or glutamine incorporation into protein and lipid, paralleled the oxidative decreases. Cytosolic and nuclear processes such as leucine incorporation into protein and thymidine into DNA were depressed more by aging than Alzheimer disease. These findings suggest that calcium homeostasis and mitochondrial functions are altered more by Alzheimer disease than normal aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.