Abstract
Brain-derived neurotrophic factor (BDNF) has been implicated in the pro-neurogenic effect of selective serotonin reuptake inhibitors. In this study, we used Tph2 -/- mice lacking brain serotonin to dissect the interplay between BDNF and the serotonin system in mediating the effects of antidepressant pharmacotherapy on adult neurogenesis in the hippocampus. Besides citalopram (CIT), we tested tianeptine (TIA), an antidepressant whose mechanism of action is not well understood. Specifically, we examined cell survival and endogenous concentrations of BDNF following daily injection of the drugs. Twenty-one days of CIT, but not of TIA, led to a significant increase in the survival of newly generated cells in the dentate gyrus of wild-type mice, without a significant effect on BDNF protein levels by either treatment. In Tph2 -/- mice, adult neurogenesis was consistently increased. Furthermore, Tph2 -/- mice showed increased BDNF protein levels, which were not affected by TIA but were significantly reduced by CIT. We conclude that the effects of CIT on adult neurogenesis are not explained by changes in BDNF protein concentrations in the hippocampus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.