Abstract

Targeting the modes of pathogen shedding/transmission via exosomes or extracellular vesicles has been envisioned as the best approach to control vector-borne diseases. This study is focused on altering exosomes stability to affect the pathogen transmission from infected to naïve recipient cells. In this study, neuronal or arthropod exosomes were treated at different temperatures or with different salts or pH conditions to analyze their ability and efficiency in the transmission of tick-borne Langat virus (LGTV) from infected to naïve recipient cells. Quantitative real-time PCR (qRT-PCR) and immunoblotting analyses revealed that treatment of neuronal or tick exosomes at warmer temperatures of 37 °C or 23 °C, respectively, or with sulfate salts such as Magnesium or Ammonium sulfates or with highly alkaline pH of 9 or 11.5, dramatically reduced transmission of LGTV via infectious exosomes (human or tick cells-derived) to human neuronal (SH-SY5Y) cells or skin keratinocytes (HaCaT cells), respectively. Overall, this study suggests that exosome-mediated viral transmission of vector-borne pathogens to the vertebrate host or the viral dissemination and replication within or between the mammalian host can be reduced by altering the ability of exosomes with basic changes in temperatures, salts or pH conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call