Abstract

Dilated cardiomyopathy, a disease of unknown etiology and pathogenesis, is associated with heart failure and compensatory hypertrophy. Although cell and animal models suggest a role for altered gene expression in the transition to heart failure, there is a paucity of data derived from the study of human heart tissue. In this study, we used DNA microarray profiling to investigate changes in the expression of genes involved in apoptosis that occur in human idiopathic dilated cardiomyopathic hearts that had progressed to heart failure. We observed altered gene expression consistent with a proapoptotic shift in the TNF-alpha signaling pathway. Specifically, we found decreased expression of TNF-alpha- and NF-kappaB-induced antiapoptotic genes such as growth arrest and DNA damage-inducible (GADD)45beta, Flice inhibitory protein (FLIP), and TNF-induced protein 3 (A20). Consistent with a role for apoptosis in heart failure, we also observed a significant decrease in phosphorylation of BAD at Ser-112. This study identifies several pathways that are altered in human heart failure and provides new targets for therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.