Abstract

ABSTRACT Running has a high incidence of overuse injuries. Achilles tendon (AT) injuries may occur due to high forces and repetitive loading during running. Foot strike pattern and cadence have been linked to the magnitude of AT loading. The effect of running speed on AT stress and strain, muscle forces, gait parameters and running kinematics is not well addressed in recreational runners with lower pace of running. Twenty-two female participants ran on an instrumented treadmill between 2.0 and 5.0 m/s. Kinetic and kinematic data were obtained. AT cross-sectional area data were collected using ultrasound imaging. Inverse dynamics with static optimization was used to calculate muscle forces and AT loading. AT stress, strain and cadence increased with greater running speed. Foot inclination angle indicated a rearfoot strike pattern among all participants, which increased as running speed increased but the latter plateaued after 4.0 m/s. The soleus contributed more force in running compared to the gastrocnemius throughout all speeds. Highest running speeds had the most stress on the AT, with changes to foot inclination angle and cadence. Understanding the relation of AT loading variables with running speed may aid in understanding how applied load may influence injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.