Abstract

BackgroundThe pathophysiology of coronasomnia remains unclear. This study aimed to investigate changes in white matter (WM) microstructure and inflammatory factors in patients with sleep disorders (SD) characterized by poor sleep quantity, quality, or timing following coronavirus disease 2019 (COVID-19) infection in the acute phase (within one month) and whether these changes could be recovered at 3-month follow-up. Methods29 acute COVID-19 patients with SD (COVID_SD) and 27 acute COVID-19 patients without SD (COVID_NonSD) underwent diffusion tensor imaging (DTI), tested peripheral blood inflammatory cytokines level, and measured Pittsburgh Sleep Quality Index (PSQI), and matched 30 uninfected healthy controls. Analyzed WM abnormalities between groups in acute phase and explored its changes in COVID_SD at 3-month follow-up by using tract-based spatial statistics (TBSS). Correlations between DTI and clinical data were examined using Spearman partial correlation analysis. ResultsBoth COVID_SD and COVID_NonSD exhibited widespread WM microstructure abnormalities. The COVID_SD group showed specific WM microstructure changes in right inferior fronto-occipital fasciculus (IFOF) (lower fractional anisotropy [FA]/axial diffusivity [AD] and higher radial diffusivity [RD]) and left corticospinal tract (CST) (higher FA and lower RD) and higher interleukin-1β (IL-1β) compared with COVID_NonSD group. These WM abnormalities and IL-1β levels were correlated PSQI score. After 3 months, the IFOF integrity and IL-1β levels tended to return to normal accompanied by symptom improvement in the COVID_SD relative to baseline. ConclusionAbnormalities in right IFOF and left CST and elevated IL-1β levels were important neurophenotypes correlated with COVID_SD, which might provide new insights into the pathogenesis of neuroinflammation in SD patients induced by COVID-19.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call