Abstract

Recent models of chaotic variation in the Martian obliquity suggest that CO2 could be released during times of high obliquity and then recaptured in the polar caps as ice or clathrate during times of lower obliquity (Jakosky, et al., 1995). A natural implication of clathrate trapping is that other species in the Martian atmosphere, including noble gases, must incorporate in the water ice structure as well, in varying amounts according to the size and polarizability of the molecules as well as their atmospheric abundances. For nominal estimates of cap volume and amount of incorporated CO2 , we find that the current atmospheric inventory of noble gases is not representative of the bulk inventory in the Martian surface-atmosphere system. In particular, xenon and krypton are underrepresented in the present atmosphere. Models of source regions for Martian volatiles, which are constrained by noble gas abundances, must be modified to take these fractionation effects into account if indeed evidence for large amounts of polar clathrates is found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.