Abstract

The disulfide loop domain of Pseudomonas aeruginosa PAO pilin was altered by insertion of a chloramphenicol acetyltransferase gene into the pilin gene so that the C-terminal nine amino acids were replaced with 11 new amino acids. The altered pilin gene was transferred into wild-type PAO by recombination, where it did not affect normal piliation as observed by transmission electron microscopy or change of sensitivity to f116, PO4, B9, and Pf1 pilus-specific bacteriophages. However, the binding to human pneumocyte A549 cells was markedly reduced when tested in an in vitro binding assay (2 to 6 bacteria bound per A549 cell for the mutant bacteria compared with 50 bacteria per A549 cell for the wild-type bacteria). Additionally, when susceptible A.BY/SnJ mice were challenged with wild-type P. aeruginosa PAO and with P. aeruginosa PAO-MP (altered pilin gene), a 50% lethal dose of 3 x 10(6) bacteria per mouse was observed for PAO-MP compared with 7 x 10(4) bacteria per mouse for PAO. Approximately 90 of the adherence capability of P. aeruginosa PAO is seemingly attributable to the C-terminal disulfide loop adherence domain of pili. The pilus adherence function contributes significantly to the virulence of P. aeruginosa PAO in the A.BY/SnJ mouse infection model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.