Abstract

We have used site-directed mutagenesis to alter the [Fe-S] cluster composition of Escherichia coli dimethyl sulfoxide (DMSO) reductase (DmsABC). The electron-transfer subunit (DmsB) of this enzyme contains 16 Cys residues arranged in 4 groups (I-IV) which provide ligands to 4 [4Fe-4S] clusters [Cammack, R., & Weiner, J. H. (1990) Biochemistry 29, 8410-8416]. Strong homologies exist between these Cys groups and the four Cys groups of the electron-transfer subunit (NarH) of E. coli nitrate reductase (NarGHJI), which contains a [3Fe-4S] cluster in addition to multiple [4Fe-4S] clusters. The Cys group primarily involved in providing ligands to the [3Fe-4S] cluster of NarH has a Trp residue at a position equivalent to Cys102 of DmsB. We have mutated Cys102 to Trp, Ser, Tyr, and Phe and have investigated the altered enzymes in terms of their enzymatic activities and EPR properties. The mutant enzymes do not support electron transfer from menaquinol to DMSO, although they retain high rates of electron transport from reduced benzyl viologen to DMSO. The mutations cause major changes in the EPR properties of the enzyme in the fully reduced and oxidized states. In the oxidized state, new species are observed in all the mutants; these have spectral features comprising a peak at g = 2.03 (gz) and a peak-trough at g = 2.00 (gxy). The temperature dependencies, microwave power dependencies, and spin quantitations of these species are consistent with the Trp102, Ser102, Phe102, and Tyr102 mutations causing conversion of one of the [4Fe-4S] clusters present in the wild-type enzyme into [3Fe-4S] clusters in the mutant enzymes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call