Abstract

Testosterone is responsible for several changes in the brain, including behavioral and emotional responses, memory, and cognition. Given this, we investigated changes in the brain wave profile caused by supplementation with exogenous testosterone in both castrated and non-castrated rats. We also investigated the serum testosterone levels, renal and hepatic function, and the lipid and behavioral profiles. We found changes in the spectral wave power in both groups (castrated and non-castrated animals) supplemented with exogenous testosterone, consistent with an aggressive/hostile profile. These changes were observed in the electrocorticographic evaluation associated with increased power in low-frequency (delta and theta) and high-frequency (beta and gamma) activity in the supplemented animals. The castrated animals presented a significant decrease of wave power in the alpha frequency. This correlated with a decrease of the performance of the animals in the elevated plus-maze evaluation, given that the alpha wave is linked to the execution and visualization of motor processes. In the behavioral evaluation, the castrated animals presented a reduced permanence time in the elevated-plus maze, although this was prevented by the supplementation of testosterone. Testosterone supplementation induced aggressive behavior in non-castrated animals, but not in castrated ones. Supplemented animals had significantly elevated serum testosterone levels, while their urea levels were significantly lower, but without clinical significance. Our data indicate that testosterone supplementation in non-castrated rats, but not in castrated ones, causes electrocorticographic changes that could be associated with more aggressive and hostile behavior, in addition to indicating a potential for personality disorder. However, further studies are required to elucidate the cellular and molecular changes caused by acute testosterone supplementation.

Highlights

  • Testosterone is the major anabolic androgenic steroid (AAS) hormone, which plays a key role in brain development [1]

  • The present study investigated the effects of testosterone supplementation in non-castrated and castrated male rats, through the evaluation of the electrocorticographic (ECoG) activity, and the behavioral, biochemical, and hormonal changes provoked by the treatment in these animals

  • The groups with testosterone supplementation (NC + TST and C + TST) presented power distributions oscillating below 40 Hz with alterations in the electrocorticographic tracings of all brain waves (Figures 2C,D)

Read more

Summary

Introduction

Testosterone is the major anabolic androgenic steroid (AAS) hormone, which plays a key role in brain development [1]. This hormone is predominant in males and has numerous physiological roles, acting in both the central nervous system (CNS) and peripheral tissue [2]. The effects of testosterone on the brain are crucial to development and sexual behavior, and are responsible for the differences between the sexes [3]. Testosterone acts as a neurosteroid in the neurons, where it may induce changes at the cellular level, affecting behavior, memory, cognition, and emotion [4,5,6]. The long-term effects of this hormone on brain development involve epigenetic modifications [10]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.