Abstract

The structural, vibrational and electronic properties of several compositions of amorphous Ge-Se-Te are studied from a combination of x-ray diffraction and density functional-based molecular dynamics. Different structural properties are considered such as structure factors, pair distribution functions, angular distributions, coordination numbers, and neighbor distributions. We compare results with experimental findings and a satisfying agreement is found for the structure functions in real and reciprocal spaces. The short range order is found to be more complex than in related binaries that result in mixed geometries ($\ensuremath{\simeq}65%--75%$ tetrahedral, and remaining defect octahedral) for a dominant fourfold Ge (80%). The chalcogen atoms are dominantly twofold, the former having furthermore an important fraction of threefold coordinated atoms (30%--40%). The obtained model structures indicate that Ge-Ge, Ge-Se, and Ge-Te bonds dominate with small fractions of Te-Te bonds remaining from the base system GeTe. The investigation of electronic properties indicates that the addition of Se atoms will lead to Te-related bands that are much more localized so that Ge-Te-Se can be regarded as having an increased covalent character with respect to GeTe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.