Abstract

Purpose: Changes in the sensitivity of intratumor quiescent (Q) and total cells to γ-rays following thermal neutron irradiation with or without 10B-compound were examined. Methods and Materials: 5-Bromo-2′-deoxyuridine (BrdU) was injected to SCC VII tumor-bearing mice intraperitoneally 10 times to label all the proliferating (P) tumor cells. As priming irradiation, thermal neutrons alone or thermal neutrons with 10B-labeled sodium borocaptate (BSH) or dl-p-boronophenylalanine (BPA) were administered. The tumor-bearing mice then received a series of γ-ray radiation doses, 0 through 24 h after the priming irradiation. During this period, no BrdU was administered. Immediately after the second irradiation, the tumors were excised, minced, and trypsinized. Following incubation of tumor cells with cytokinesis blocker, the micronucleus (MN) frequency in cells without BrdU labeling (= Q cells at the time of priming irradiation) was determined using immunofluorescence staining for BrdU. The MN frequency in the total (P + Q) tumor cells was determined from the tumors that were not pretreated with BrdU before the priming irradiation. To determine the BrdU-labeled cell ratios in the tumors at the time of the second irradiation, each group also included mice that were continuously administered BrdU until just before the second irradiation using mini-osmotic pumps which had been implanted subcutaneously 5 days before the priming irradiation. Results: In total cells, during the interval between the two irradiations, the tumor sensitivity to γ-rays relative to that immediately after priming irradiation decreased with the priming irradiation ranking in the following order: thermal neutrons only > thermal neutrons with BSH > thermal neutrons with BPA. In contrast, in Q cells, during that time the sensitivity increased in the following order: thermal neutrons only < thermal neutrons with BSH < thermal neutrons with BPA. The longer the interval between the two irradiations, the higher was the BrdU-labeled cell ratio at the second irradiation. The labeled cell ratio at the same time point after each priming irradiation increased in the following order: thermal neutrons only < thermal neutrons with BSH < thermal neutrons with BPA. Conclusion: These findings indicated that the use of 10B-compound, especially BPA, in thermal neutron irradiation causes the recruitment from the Q to P population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call