Abstract

Aging is associated with decline in cognitive function, but the underlying mechanisms have not been elucidated. Normal activity of pyramidal cells and parvalbumin-expressing interneurons (PV neurons) is essential for cognitive function. PV neurons participate in the regulation of pyramidal-cell firing. Abnormal function of PV neurons may occur with aging. We analyzed the density and the percentage of PV neurons surrounded by perineuronal nets (PNNs) in the entire cortex of adult (3-month-old) and aged (24-month-old) mice. PNNs are extracellular matrix molecules that cover PV neurons and control synaptic plasticity. PV-neuron density decreased in some cortical areas of aged compared to adult mice. In particular, in the retrosplenial granular cortex (RSG) of aged mice, pyramidal cells expressed PV protein at high levels. This study suggests that the RSG of aged mice is in an abnormal activated state. RSG function abnormality may be part of the cognitive decline mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.