Abstract

ObjectiveThis study aimed to examine the changes in the functional connectivity of the cortical speech articulation network after anodal transcranial direct current stimulation (A-tDCS) over the left lip region of the primary motor cortex (M1) in subacute post-stroke patients with apraxia of speech (AoS), and the effect of A-tDCS on AoS.MethodsA total of 24 patients with post-stroke AoS were randomized into two groups and received A-tDCS over the left lip region of M1 (tDCS group)/ sham tDCS (control group) as well as speech and language therapy two times per day for 5 days. Before and after the treatment, the AoS assessments and electroencephalogram (EEG) were evaluated. The cortical interconnections were measured using the EEG non-linear index of cross approximate entropy (C-ApEn).ResultsThe analysis of EEG showed that, after the treatment, the activated connectivity was all in the left hemisphere, and not only regions in the speech articulation network but also in the dorsal lateral prefrontal cortex (DLPFC) in the domain-general network were activated in the tDCS group. In contrast, the connectivity was confined to the right hemisphere and between bilateral DLPFC and bilateral inferior frontal gyrus (IFG) in the control group. In AoS assessments, the tDCS group improved significantly more than the control group in four of the five subtests. The results of multivariate linear regression analyses showed that only the group was significantly associated with the improvement of word repetition (P = 0.002).ConclusionA-tDCS over the left lip region of M1 coupled with speech therapy could upregulate the connectivity of both speech-specific and domain-general networks in the left hemisphere. The improved articulation performance in patients with post-stroke AoS might be related to the enhanced connectivity of networks in the left hemisphere induced by tDCS.Clinical trial registrationChiCTR-TRC-14005072.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.