Abstract

(1) Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder that threatens the population health of older adults. However, the mechanisms of the altered metabolism involved in AD pathology are poorly understood. The aim of the study was to identify the potential biomarkers of AD and discover the metabolomic changes produced during the progression of the disease. (2) Methods: Gas chromatography-mass spectrometry (GC-MS) was used to measure the concentrations of the serum metabolites in a cohort of subjects with AD (n = 88) and a cognitively normal control (CN) group (n = 85). The patients were classified as very mild (n = 25), mild (n = 27), moderate (n = 25), and severe (n = 11). The serum metabolic profiles were analyzed using multivariate and univariate approaches. Least absolute shrinkage and selection operator (LASSO) logistic regression was applied to identify the potential biomarkers of AD. Biofunctional enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes. (3) Results: Our results revealed considerable separation between the AD and CN groups. Six metabolites were identified as potential biomarkers of AD (AUC > 0.85), and the diagnostic model of three metabolites could predict the risk of AD with high accuracy (AUC = 0.984). The metabolic enrichment analysis revealed that carbohydrate metabolism deficiency and the disturbance of amino acid, fatty acid, and lipid metabolism were involved in AD progression. Especially, the pathway analysis highlighted that l-glutamate participated in four crucial nervous system pathways (including the GABAergic synapse, the glutamatergic synapse, retrograde endocannabinoid signaling, and the synaptic vesicle cycle). (4) Conclusions: Carbohydrate metabolism deficiency and amino acid dysregulation, fatty acid, and lipid metabolism disorders were pivotal events in AD progression. Our study may provide novel insights into the role of metabolic disorders in AD pathogenesis and identify new markers for AD diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call