Abstract
Metabolic syndrome (MetS) consists of five risk factors: elevated blood pressure and fasting glucose, visceral obesity, dyslipidemia, and hypercholesterinemia. The physiological impact of lipid metabolism indicated as visceral obesity and hepatic lipid accumulation on MetS is still under debate. One major cause of disturbed lipid metabolism might be dysfunction of cellular organelles controlling energy homeostasis, i.e., mitochondria and peroxisomes. The New Zealand Obese (NZO) mouse model exhibits a polygenic syndrome of obesity, insulin resistance, triglyceridemia, and hypercholesterolemia that resembles human metabolic syndrome. We applied a multi-omics approach combining lipidomics with liver transcriptomics and top-down MS based organelle proteomics (2D-DIGE) of highly enriched mitochondria and peroxisomes in male mice, to investigate molecular mechanisms related to the impact of lipid metabolism in the pathophysiology of the metabolic syndrome. Proteome analyses of liver organelles indicate differences in fatty acid and cholesterol metabolism, mainly influenced by PG-C1α/PPARα and other nuclear receptor mediated pathways. These results are in accordance with altered serum lipid profiles and elevated organelle functionality. These data emphasize that metabolic syndrome is accompanied with increased mitochondria and peroxisomal activity to cope with dyslipidemia and hypercholesterinemia driven hepatic lipid overflow in developing a fatty liver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.