Abstract

Intestinal epithelial cells may be actively involved in the immunoregulatory pathways leading to intestinal inflammation. The aim of this study was to assess expression by intestinal epithelial cells of cytokines with potential involvement in the development of intestinal inflammation in interleukin (IL)-2-deficient [(-/-)] mice. Wild-type mice, mice heterozygous for the disrupted IL-2 gene, and IL-2(-/-) mice were studied at 6, 16, and 24 wk of age. The mRNA levels of transforming growth factor-beta 1 (TGF-beta 1), tumor necrosis factor-alpha (TNF-alpha), IL-1 beta, IL-6, IL-15, KC, JE, and CD14 in colonic and small intestinal epithelial cells were assessed by Northern blot analysis. CD14 was also measured by Western blotting and reverse transcriptase polymerase chain reaction (RT-PCR). TGF-beta 1 mRNA was constitutively expressed in both colonic and small intestinal epithelial cells with increased expression in the colonic epithelium of colitic mice. CD14 was detected only in colonic epithelial cells, and mRNA levels increased severalfold in IL-2(-/-) mice with colitis. Northern analysis demonstrated increased levels of TGF-beta 1 and CD14 mRNA in colonic epithelial cells of IL-2(-/-) mice before the development of signs of colitis. CD14 mRNA and protein expression in the epithelial cells of colitic mice were confirmed by RT-PCR and Western blot analysis of isolated cells. In addition, IL-2(-/-) mice also expressed increased levels of IL-15 mRNA in small intestinal and colonic epithelial cells compared with heterozygous control mice. TNF-alpha, IL-1 beta, IL-6, KC, and JE mRNAs were only detectable in colonic epithelial cells of mice after the onset of colitis. Enhanced expression of TGF-beta 1, IL-15, and CD14 by colonic epithelial cells may play a role in the subsequent development of colitis in IL-2(-/-) mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.