Abstract

Gangliosides are ubiquitous components of mammalian cells. Their expression is frequently altered in many tumor types. We previously showed that alteration of the ganglioside composition often resulted in changes in cellular morphology and differentiation of cultured cells. In this study, we targeted sialyltransferase gene expression by the antisense knockdown experiment, and the results showed that inhibition of the expression of gangliosides GD3 and O-acetylated GD3 (OAc-GD3) in the neuroblastoma F-11 cells greatly reduced the tumor growth in nude mice. The sense and antisense vectors containing either a 5' end fragment or the entire sequence of the cDNA coding for GD3-synthase were prepared and used in separate experiments to transfect the F-11 cells which express high levels of gangliosides GD3 and OAc-GD3. Single clones were isolated and expanded. Both the activity of the GD3-synthase and the concentrations of GD3 and OAc-GD3 in the antisense-transfected cells were dramatically decreased as a result of transfection with the antisense expression vectors. Further characterization of the antisense-transfected cells showed reduced rates of cell growth and neurite formation and changes in cellular morphology. When the cells were inoculated in athymic nude mice, the tumor growth rate was remarkably suppressed although the tumor incidence was not affected by the altered ganglioside composition. These results indicate that the tumor-associated ganglioside(s) is(are) involved in regulation of tumor growth, probably through the stimulation of angiogenesis of the tumor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call