Abstract

The objectively-defined subtle cognitive decline individuals had higher progression rates of cognitive decline and pathological deposition than healthy elderly, indicating a higher risk of progressing to Alzheimer's disease. However, little is known about the brain functional alterations during this stage. Thus, we aimed to investigate the functional network patterns in objectively-defined subtle cognitive decline cohort. Forty-two cognitive normal, 29 objectively-defined subtle cognitive decline and 55 mild cognitive impairment subjects were included based on neuropsychological measures from the Alzheimer's disease Neuroimaging Initiative dataset. Thirty cognitive normal, 22 objectively-defined subtle cognitive declines and 48 mild cognitive impairment had longitudinal MRI data. The degree centrality and eigenvector centrality for each participant were calculated by using resting-state functional MRI. For cross-sectional data, analysis of covariance was performed to detect between-group differences in degree centrality and eigenvector centrality after controlling age, sex and education. For longitudinal data, repeated measurement analysis of covariance was used for comparing the alterations during follow-up period among three groups. In order to classify the clinical significance, we correlated degree centrality and eigenvector centrality values to Alzheimer's disease biomarkers and cognitive function. The results of analysis of covariance showed significant between-group differences in eigenvector centrality and degree centrality in left superior temporal gyrus and left precuneus, respectively. Across groups, the eigenvector centrality value of left superior temporal gyrus was positively related to recognition scores in auditory verbal learning test, whereas the degree centrality value of left precuneus was positively associated with mini-mental state examination total score. For longitudinal data, the results of repeated measurement analysis of covariance indicated objectively-defined subtle cognitive decline group had the highest declined rate of both eigenvector centrality and degree centrality values than other groups. Our study showed an increased brain functional connectivity in objectively-defined subtle cognitive decline individuals at both local and global level, which were associated with Alzheimer's disease pathology and neuropsychological assessment. Moreover, we also observed a faster declined rate of functional network matrix in objectively-defined subtle cognitive decline individuals during the follow-ups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call