Abstract

The previously documented impairment of hindlimb blood flow consecutive to chronic hypoxia might be related to endothelial vasomotor dysfunction. The aim of this study was to assess in-vivo the effect of chronic hypoxic stress on endothelium-mediated vasodilator response of hindlimb vascular bed, especially as regards to endothelium-derived hyperpolarizing factor (EDHF) and nitric oxide (NO) pathway contribution. Dark Agouti rats were randomly assigned to live at barometric pressure ≈ 760 mmHg (N rats) or ≈ 550 mmHg (CH rats). Under anesthesia, catheters were placed in the carotid artery for arterial pressure measurement, and in the saphenous vein and iliac artery for drug delivery. Hindlimb blood flow (HBF) was measured by transit-time ultrasound flowmetry, at baseline and during endothelium-dependent vasodilator response induced by intra-arterial injection of acetylcholine (0.75 ng and 7.5 ng) with and without specific blockers of NOS (L-NAME) and EDHF (Charybdotoxin + Apamin). HBF and hindlimb vascular conductance changes in response to ACh infusion were significantly lower in CH than in N rats. The mechanisms responsible for this blunted response involved impairment in both NO pathway and EDHF. The chronic hypoxia-induced alteration of NO pathway was mainly related to the bioavailability of its substrate l-Arginine, since the infusion of l-Arginine restored the endothelial response to ACh in CH rats to the level of N rats. These results demonstrate that the impairment in endothelium-mediated vasodilator response of the hindlimb vascular tree induced by chronic hypoxic stress involves both NO and EDHF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call