Abstract

Polystyrene nanoparticles (PS-NPs) have a potential toxicity on offspring after the exposure. However, the molecular basis for PS-NP in inducing transgenerational toxicity remains largely unknown. In this study, the role and the underlying mechanism of germline Wnt signaling in regulating transgenerational toxicity of PS-NPs were determined using an in vivo animal model of Caenorhabditis elegans. Exposure to PS-NP (1–100 μg/L) increased expression of Wnt ligand LIN-44 and decreased expression of Wnt receptor MIG-1. After the exposure, the transgenerational PS-NP toxicity on locomotion behavior and brood size were inhibited in lin-44(RNAi) nematodes, while enhanced in mig-1(RNAi) nematodes. The resistance to transgenerational PS-NP toxicity induced by RNAi of lin-44 in P0 generation (P0-G) was inhibited by RNAi of mig-1 in F1-G. In addition, after PS-NP exposure, germline RNAi of lin-44 at P0-G could increase the mig-1 expression in F1-G. Exposure to PS-NP (1–100 μg/L) further decreased expressions of Dishevelled proteins of DSH-1/2, increased APC complex component APR-1, and decreased expression of BAR-1/β-catenin. Meanwhile, transgenerational PS-NP toxicity was enhanced by RNAi of dsh-1, dsh-2, or bar-1 and inhibited by RNAi of apr-1, suggesting that the DSH-1/2-APR-1-BAR-1 signaling cascade acted downstream of Wnt receptor MIG-1 to control transgenerational PS-NP toxicity. Moreover, BAR-1 acted upstream of DVE-1 to activate mitochondrial unfolded protein response (mt UPR) against the transgenerational PS-NP toxicity. Our data highlights the potential link between alteration in germline Wnt signaling and induction of transgenerational nanoplastic toxicity in organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call