Abstract
In the central nervous system, the expression level of transcriptional repressor Hes1 (hairy and enhancer of split-1) tightly controls the alternative cell fate commitment during differentiation as well as the time required for such cellular transitions. A microRNA, miR-9, that interacts with Hes1 in a mutually antagonistic manner, influences both the process of lineage specification and timing of differentiation significantly, but the impact of the miR-9 in guiding these events still remains poorly understood. Here, we proposed a stochastic mathematical model of the miR-9/Hes1 double-negative feedback interaction network that at the outset shows how alternative cell fate such as quiescence, progenitor, and neuronal states can be accomplished through fine-tuning the Hes1 dynamics by altering the expression level of miR-9. The model simulations further foretell a correlated variation of the period of oscillation of Hes1, and the time delay observed between Hes1 mRNA and protein as the transcription rate of miR-9 increases during the neural progenitor state attainment. Importantly, the model simulations aided by the systematic sensitivity analysis predict that the timing of differentiation to the neuronal state crucially depends on the negative regulators (miR-9 and Hes6) of the Hes1. Our results indicate that miR-9/Hes1 interaction network can be effectively exploited for an efficient and well-timed neuronal transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.