Abstract
What is the central question of this study? Facial skin blood flow (SBF) might increase during head-down tilt (HDT). However, the effect of HDT on facial SBF remains controversial. In addition, the changes in facial SBF in the cheek (cheek SBF) during a steeper angle of HDT (>-12° HDT) have not been investigated. What is the main finding and its importance? This study showed that cheek SBF decreased during -30° HDT, alongside increased vascular resistance. Furthermore, vascular impedance was suggested to be elevated, accompanied by an increased hydrostatic pressure gradient caused by HDT. Constriction of the facial skin vascular bed and congestion of venous return owing to the steep angle of HDT can decrease facial SBF. Head-down tilt (HDT) has been used to simulate microgravity in ground-based studies and clinical procedures including the Trendelenburg position or in certain surgical operations. Facial skin blood flow (SBF) might be altered by HDT, but the effect of a steeper angle of HDT (>-12° HDT) on facial SBF remains unclear. We examined alterations in facial SBF in the cheek (cheek SBF) using two different angles (-10 and -30°) of HDT and lying horizontal (0°) in a supine position for 10min, to test the hypothesis that cheek SBF would increase with a steeper angle of HDT. Cheek SBF was measured continuously by laser Doppler flowmetry. Cheek skin vascular resistance and the pulsatility index of cheek SBF were calculated to assess the circulatory effects on the facial skin vascular bed in the cheek. Cheek SBF decreased significantly during -30° HDT. In addition, the resistance in cheek SBF increased significantly during -30° HDT. The pulsatility index of cheek SBF increased during both -10 and -30° HDT. Contrary to our hypothesis, cheek SBF decreased during -30° HDT along with increased skin vascular resistance. Vascular impedance, estimated by the pulsatility index in the cheek SBF, was elevated during both -10 and -30° HDT, and elevated vascular impedance would be related to increased hydrostatic pressure induced by HDT. Skin vascular constriction and venous return congestion would be induced by -30° HDT, leading to deceased cheek SBF. The present study suggested that facial SBF in the cheek decreased during acute exposure to a steep angle of HDT (∼-30° HDT).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.