Abstract
Introduction: Radiotherapy is a crucial component of treatment for ∼70% of all cancer patients. The identification of effective biomarkers of radiosensitivity (RS) is a fundamental goal of radiobiology. The authors hypothesize that the RS of human normal and tumoral cells is correlated by the level of expression of TRIM29, TRIM37, TRIM44, and β-catenin genes. Materials and Methods: Clonogenic assay was performed and RS of four cell lines was determined by survival fraction at 2 Gy. To determine the level of gene expression 6 and 24 h after irradiation, RNA was extracted from each cell line, and expression of the above-mentioned genes in cell lines with different RS was determined by real-time polymerase chain reaction (PCR). Results: The clonogenic assay showed that human dermal fibroblasts (fibroblast) and HT-29 (colorectal) cells are radioresistant, while human foreskin fibroblasts (fibroblast) and QU-DB (lung) cells are radiosensitive. Analysis of the real-time PCR data, 6 h after irradiation, showed that the increase and decrease of the expression of TRIM29 and TRIM37 genes were directly correlated with the RS of normal and tumor cells. At 24 h postirradiation, a considerable difference was only observed in the expression of the β-catenin gene. Conclusion: This study showed that the TRIM29 and TRIM37 genes are involved in the cell response to radiation and proposed that these genes may be biomarkers for predicting RS in normal and tumoral cell lines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.