Abstract

We investigated whether in-utero Cd(II) chloride exposure of the dams between 14th to 21st day of gestation affects memory and learning, oxidative stress, antioxidant enzyme activity and their gene expression in brain of the pups in their adulthood. In the Morris water maze, cadmium (Cd) exposure impaired spatial memory which was reversed following co-treatment with quercetin (100mg/kg). In the passive avoidance paradigm, retention memory was adversely affected but was significantly reversed by co treatment with quercetin (25, 50, 100mg/kg). The malondialdehyde and catalase (CAT) levels and glutathione-S-transferase (GST) activity were increased significantly in Cd-treated group, but were reversed by quercetin (all doses). The gene expression for CAT and GST in brain tissue of Cd treated animals also increased many folds as compared to the control, and this effect was decreased on co-treatment with quercetin (all doses), thus matching with the respective enzyme activities. Quercetin (25mg/kg) when co-treated with Cd caused a decrease in GST activity compared to control, which points towards a complex interplay with oxidative free radicals and promoters and transcription factors. Thus, Cd exposure during late gestation causes impaired spatial and retention memory in the next generation which may be due to alteration of activity as well as gene expression of the antioxidant enzymes, CAT and GST. Quercetin may offer some protection of memory impairment probably by modulating these effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call