Abstract

The mesothermal Au deposit at Middagsberget in northern Sweden is associated with irregular stock-works of quartz veins occurring in shear zones across a dioritic intrusion. Alteration in the shear zones is characterized by sericitization, chloritization, the presence of sulphides and several generations of veins and small-scale fractures. Small fractures which are filled with variable amounts of quartz, carbonate, sericite, chlorite, albite and sulphides, are particularly abundant in zones having a high Au content. In general, these fractures are younger than the major quartz veins and were apparently important for strong Au-enrichment. Au is associated with arsenopyrite and it occurs as droplets or interfillings in the arsenopyrite or at the crystal surface; together with pyrrhotite as inclusions in arsenopyrite; as free grains in silicates but close to arsenopyrite; or in very small fractures in carbonates. The Au-mineralization is associated with elevated contents of As, S, Sb and W and depletion of Cu, Zn, Ge and Bi. The entire altered areas are enriched in Au compared with the < 1 to 15 ppb found in the host intrusion. During alteration an initial increase in Na or K was accompanied by a weak enrichment of Au and associated elements together with a depletion of elements such as Ca and Mg. In Au-rich samples this alkali enrichment was overprinted by the carbonate-and sulphide-bearing fractures, which often led to an increased Ca-content. An clear zonation of alteration types has not been found. The host rock has been altered by several generations of fluids: the shear zones were repeatedly ruptured and new small-scale fractures were opened. The different fluids did not, therefore, flow through identical paths although they penetrated the same major zones. This resulted in a complex pattern of variously superimposed alterations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.