Abstract

We report on the experimental demonstration of aluminum scandium nitride (AlScN)-on-cubic silicon carbide (3C-SiC) Lamb wave resonators (LWRs) realized via microelectromechanical systems (MEMS) technology, operating at high temperature (T) up to T = 800 °C, while retaining robust electromechanical resonances at ∼27 MHz and good quality factor of Q ≈ 900 even at 800 °C. Measured resonances exhibit clear consistency and stability during heating and cooling processes, validating the AlScN-on-SiC LWRs can operate at high T up to 800 °C without noticeable degradation in moderate vacuum (∼20 mTorr). Even after undergoing four complete thermal cycles (heating from 23 to 800 °C and then cooling down to 23 °C), the devices exhibit robust resonance behavior, suggesting excellent stability and suitability for high-temperature applications. Q starts to decline as the temperature exceeds 400 °C, which can be attributed to energy dissipation mechanisms stemming from thermoelastic damping and intrinsic material loss originating from phonon–phonon interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call