Abstract

TDP-43 is a major pathological protein in sporadic and familial amyotrophic lateral sclerosis (ALS) and mediates mRNA fate. TDP-43 dysfunction leads to causes progressive degeneration of motor neurons, the details of which remain elusive. Elucidation of the molecular mechanisms of RNA binding could enhance our understanding of this devastating disease. We observed the involvement of the glycine-rich (GR) region of TDP-43 in the initial recognition and binding of G-quadruplex (G4)-RNA in conjunction with its RNA recognition motifs (RRM). We performed a molecular dissection of these intramolecular RNA-binding modules in this study. We confirmed that the ALS-linked mutations in the GR region lead to alteration in the G4 structure. In contrast, amino acid substitutions in the GR region alter the protein structure but do not void the interaction with G4-RNA. Based on these observations, we concluded that the structural distortion of G4 caused by these mutations interferes with RRM recruitment and leads to TDP-43 dysfunction. This intramolecular organization between RRM and GR regions modulates the overall G4-binding properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.