Abstract

Abstract Vanadium pentoxide (V2 O5) nanoplatelet was prepared through an exfoliation method by using β-cyclodextrin (β-CD) as intercalating template. To improve its electrochemical performance in the aqueous electrolyte, the nanoplatelet was coated with amorphous AlPO4 by sol-gel method. The effect of this coating layer on the rate and cycling properties is investigated by cyclic voltammetry and galvanostatic charge-discharge. The 1.6 % AlPO4-coated sample could deliver an initial capacity of 128 mAh g–1 at 0.1 C rate, and remain 99 % of the initial one after 50 cycles. The discharge capacities in the first cycle are 119, 113, and 104 mAh g–1 at the rates of 0.3, 1.5, and 3 C, respectively. The corresponding maintaining ratios are 98, 92, and 87 % after 50 cycles. The results suggest the AlPO4-coated V2 O5 nanoplatelet has good rate capability and cycling performance, indicating its promising application as an anode material in aqueous rechargeable lithium batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call