Abstract

The neuronal protein alpha-synuclein is thought to be central in the pathogenesis of Parkinson’s Disease (PD). Excessive wild type alpha-synuclein levels can lead to PD in select familial cases and alpha-synuclein protein accumulation occurs in sporadic PD. Therefore, elucidation of the mechanisms that control alpha-synuclein levels is critical for PD pathogenesis and potential therapeutics. The subject of alpha-synuclein degradation has been controversial. Previous work show that, in an assay with isolated liver lysosomes, purified wild type alpha-synuclein is degraded by the process of Chaperone Mediated Autophagy (CMA). Whether this actually occurs in a cellular context has been unclear. In our most recent work, we find that wild type alpha-synuclein, but not the closely related protein beta-synuclein, is indeed degraded by CMA in neuronal cells, including primary postnatal ventral midbrain neurons. Macroautophagy, but not the proteasome, also contributes to alpha-synuclein degradation. Therefore, two separate lysosomal pathways, CMA and macroautophagy, degrade wild type alpha-synuclein in neuronal cells. It is hypothesized that impairment of either of these two pathways, or of more general lysosomal function, may be an initiating factor in alpha-synuclein accumulation and sporadic PD pathogenesis. Addendum to: Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L. Wild type α-synuclein is degraded by chaperone mediated autophagy and macroautophagy in neuronal cells. J Biol Chem 2008; In press.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.