Abstract

Previous studies have shown that the compact structure of a rhenium-cyclized alpha--melanocyte-stimulating hormone peptide analog, [Cys3410,D-Phe7]alpha-MSH(3--13), or Re-CCMSH, significantly enhanced its in vivo tumor uptake and retention. In this study, the metal chelate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was coupled to the N-terminus of Re-CCMSH in order to develop a melanoma-targeting peptide that could be labeled with a wider variety of imaging and therapeutic radionuclides. Biodistribution properties of indium-111 ((111)In)--labeled DOTA-Re-CCMSH were compared with the non-DOTA-containing technetium-99m ((99m)Tc)--CCMSH in murine melanoma--bearing C57 mice to determine the effects of DOTA on tumor uptake and whole-body clearance. The tumor targeting capacity and clearance kinetics of (111)In-DOTA-Re-CCMSH were also compared with other related cyclic and linear (111)In-labeled DOTA-alpha-MSH complexes. The in vivo distribution data showed that the conjugation of DOTA to Re-CCMSH did not reduce its initial tumor uptake kinetics but did enhance its tumor retention and renal clearance properties. The tumor uptake of (111)In-DOTA-Re-CCMSH was significantly higher than the other (111)In-DOTA--coupled cyclic or linear alpha-MSH analogs used in this study. Moreover, (111)In-DOTA-Re-CCMSH displayed lower radioactivity accumulation in normal tissues of interest than its non-Re-cyclized counterpart, (111)In-DOTA-CCMSH; the disulfide bond--cyclized (111)In-DOTA-CMSH; or the linear (111)In-DOTA-NDP. Peptide cyclization via rhenium coordination significantly enhanced the tumor targeting and renal clearance properties of DOTA-Re-CCMSH, making it an excellent candidate for melanoma radiodetection and radiotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call