Abstract

The distribution of alpha-melanocyte-stimulating hormone (alpha-MSH) containing neurons and the molecular forms of alpha-MSH-related peptides exhibit substantial differences in the brains of fish and amphibians. Lungfishes, which share similarities with both fishes and tetrapods, represent a valuable group in which to investigate the neuroanatomical and neurochemical facets of evolution. In the present study, we have localized and characterized alpha-MSH-immunoreactive peptides in the central nervous system of the African lungfish Protopterus annectens. Perikarya exhibiting alpha-MSH-like immunoreactivity were observed in two distinct regions of the hypothalamus: the rostral part of the preoptic nucleus and the caudal part of the hypothalamus. In the caudal hypothalamus most alpha-MSH-immunopositive perikarya were located in both the subependymal and deepest layers of the ventral periventricular region. Scattered alpha-MSH-immunopositive cells were occasionally detected in the dorsal side of the caudal hypothalamus. The alpha-MSH-immunoreactive material localized in the brain was characterized by combining high-performance liquid chromatography (HPLC) analysis and radioimmunological detection. The displacement curves obtained with synthetic alpha-MSH and serial dilutions of brain and pituitary extracts were parallel. HPLC analysis of lungfish hypothalamic extracts showed that the major immunoreactive peak coeluted with synthetic desacetyl alpha-MSH and its sulfoxide derivative. An additional peak coeluted with synthetic sulfoxide alpha-MSH. In contrast, in the pituitary, the predominant form of alpha-MSH-like material coeluted with the N,O-diacetyl alpha-MSH standard. These results provide the first evidence for the presence of alpha-MSH-related peptides in the brain of a lungfish. The distribution of alpha-MSH neuronal systems in the lungfish is very similar to that reported in amphibians, supporting the existence of phylogenetic convergences between these two vertebrate groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call