Abstract

The affinity of potato tuber starch-branching enzyme-I (PSBE-I) for various linear malto-oligosaccharides, cyclodextrins, (CDs) and macromolecular alpha-glucans was investigated by alpha-glucan induced fluorescence quenching of intrinsic PSBE-I tryptophan residues and by affinity electrophoresis. alpha-Glucan binding was characterised by distinct shifts towards shorter wavelengths of the PSBE-I fluorescence emission spectrum and by concomitant reductions in fluorescence intensity. The magnitudes of both the maximum shift in emission spectrum and reduction in fluorescence intensity were dependent on the alpha-glucan ligands used. Maximum Kd for a range of linear malto-oligosaccharides analysed was 0.13 mM as found at a degree of polymerisation (DP) of 13. Large differences in dissociation constants were measured for CDs with DP 6 (alpha-CD, 6.0 mM), DP 7 (beta-CD, 0.25 mM) and DP 8 (gamma-CD, 0.67 microM). The high-molecular-mass alpha-glucans amylose and amylopectin, both substrates for PSBE-I, showed apparent affinities of 0.018 and 0.066 mg/ml, respectively. Small linear and cyclic oligosaccharides competed with amylopectin in the affinity electrophoresis system and they were also competitive inhibitors for PSBE-I activity. The affinities for oligosaccharides as measured by competition were, however, about 10-fold lower than as measured by fluorescence quenching suggesting the existence of a separate oligosaccharide binding site on PSBE-I. Affinity electrophoresis revealed multiform heterogeneity in the enzyme preparation with respect to alpha-glucan interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.