Abstract

alpha-Crystallin, a major lens protein of approximately 800 kDa with subunits of approximately 20 kDa has previously been shown to act as a chaperone protecting other proteins from stress-induced aggregation. Here it is demonstrated that alpha-crystallin can bind to partially denatured enzymes at 42-43 degrees C and prevent their irreversible aggregation, but cannot prevent loss of enzyme activity. However, the alpha-crystallin-bound enzymes regain activity on interaction with other chaperones. The data indicate that the re-activated enzymes are no longer associated with the alpha-crystallin, and ATP is required for re-activation. When inactive luciferase bound to alpha-crystallin was treated with reticulocyte lysate, a rich source of chaperones, up to 60% of the original luciferase activity could be recovered. Somewhat less re-activation was observed when the alpha-crystallin-bound enzyme was treated with heat-shock protein (HSP)70, HSP40, HSP60 and an ATP-generating system. Similar results were also obtained with citrate synthase. The overall results suggest that alpha-crystallin acts to stabilize denaturing proteins so that they can later be re-activated by other chaperones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.